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The principle of quenching undesirable indirect external trouble tween the amide protons remains unaffected (except for
in nuclear Overhauser effect spectroscopy (QUIET-NOESY) re- some attenuation due to transverse relaxation during the
lies on a doubly selective inversion of the longitudinal magnetiza- BIRD sequence) , but two-step spin diffusion processes
tion components of a source spin A and a target spin X to measure involving ‘‘clandestine’’ protons that are not scalar-cou-
the cross-relaxation rate (Overhauser effect) between A and X pled to nitrogen-15 are quenched to a very good approxi-
without significant perturbation by spin diffusion. In 15N-enriched

mation. These principles are illustrated by applications toproteins, this can be achieved by using a bi linear rotation decou-
an 15N-labeled C22A mutant of the FK506 binding proteinpling (BIRD) sequence for the selective inversion of amide protons
(FKBP) , which contains 107 amino acids, has a molecularthat have a scalar coupling to nitrogen-15. The procedure can be
mass of 11.8 kD, and has an overall correlation time ofimproved by using editing techniques to simplify the resulting
about 9 ns at 303 K (11–14 ) . In both conventionalNOESY spectra. q 1998 Academic Press

NOESY and QUIET-BIRD-NOESY of Figs. 1a and 1b,
the 15N spins have been decoupled by a p pulse in the

Measuring accurate cross-relaxation rates or Overhauser middle of t1 and by a CHIRP-95 sequence (15, 16 ) during
t2 . Most cross-peaks that correlate amide and nonamideeffects is the key to the determination of molecular structures

by NMR (1) . In practice, spin-diffusion processes greatly protons ( framed in boxes in Figs. 1a and 1b) have been
greatly attenuated in Fig. 1b, indicating that the flow ofcomplicate data analysis (2, 3) , but the principle of quench-

ing undesirable indirect external trouble (QUIET) (4–6) magnetization between amide and nonamide protons has
been largely canceled. Some cross-peaks that survive inand related methods (7) permits one to isolate Overhauser

effects between a limited number of spins. We present an these boxes are due to cross-relaxation between aromatic
and aliphatic protons, which is confirmed by their oppositeimprovement which allows one to focus attention on interac-

tions between protons that have a scalar coupling to a hetero- signs compared to cross-peaks between amide protons.
Cross-peaks that correlate two different amide protonsnucleus such as nitrogen-15.

In proteins, the transfer of longitudinal magnetization (near the diagonal ) must therefore arise solely from direct
cross-relaxation between these amide protons, withoutfrom one amide proton to another, e.g., Iz(HN

n ) r

significant contamination by spin diffusion.Iz(HN
n/1) , is often overshadowed by spin diffusion effects.

Since the main goal of the experiment is to focus onTypically, two-step processes such as Iz(HN
n ) r Iz(Ha

n ) r

interactions between pairs of amide protons, all reso-Iz (H N
n/1 ) may contribute to the amplitude of the corre-

nances of nonamide protons may be suppressed by nitro-sponding cross peak. It is possible to invert the longitudi-
gen-15 half-filters (17–23 ) . In Fig. 2, a first half-filternal magnetization of all protons that are coupled to nitro-
is used at the beginning of the t1 period to excite onlygen-15 by using a bi linear rotation decoupling (BIRD)
transverse magnetization of the amide protons. After the(5, 8–10 ) sequence in the middle of the mixing time tm .
mixing interval, a modified WATERGATE (24–27 )As a result, the flow of longitudinal magnetization be-
scheme is used to suppress the water signal and to elimi-
nate all magnetization components except those arising1 To whom correspondence should be addressed. E-mail: Geoffrey.

Bodenhausen@ens.fr. Fax: /33 1 44 32 33 97. from amide protons. For this purpose, the d delays in the
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WATERGATE scheme were increased to (2JNH )01 Å 5.5
ms ( instead of about 1 ms required for a typical gradient
pulse ) while the nitrogen-15 magnetization was inverted
in every other scan. This was achieved by alternating
between 90 7x 90 7x and 90 7x 90 70x . Similar schemes have
been used in NMR of protein dimers or protein /peptide
complexes to separate inter- and intramolecular Over-
hauser effects (20, 28–30 ) . The resulting NOESY map
of Fig. 1c shows that only the signals of amide protons
remain. The intensities of the cross-peaks solely reflect
interactions between amide protons, since all other pro-
tons have been ‘‘reduced to silence’’ through the QUIET
principle. The peak intensities are attenuated by relax-
ation of the ( transverse ) magnetization during the two
half-filters and during the BIRD sequence. This atten-
uation does not exceed a factor two compared to con-
ventional NOESY. In our opinion, this loss is largely
compensated by the clarity of the QUIET spectra. The
attenuation can be taken into account by comparing all
cross-peak amplitudes with diagonal peaks recorded with
very short mixing times.

A potentially useful variation of the method combines
QUIET-BIRD-NOESY with HSQC to label the magneti-
zation by nitrogen-15 shifts in the evolution period, so that
cross-peaks can be separated even if the amide protons are
degenerate. However, it is advisable to use the homonu-
clear version of Fig. 1c to check the efficiency of the
QUIET-BIRD sequence before using an HSQC variant.
All techniques can be transposed to carbon-13-labeled
macromolecules including proteins, DNA, RNA, and
polysaccharides.
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FIG. 1. (a) Conventional NOESY spectrum of an 15N-labeled C22A
mutant of FK506 binding protein (FKBP). (b) Conventional QUIET-
BIRD-NOESY and (c) filtered QUIET-BIRD-NOESY, recorded at 300 K
and 7 T on a Bruker DMX 300 spectrometer with an inverse 5-mm probe
and a triple-axis gradient system. The spectral width was 4500 Hz (512
points) in both dimensions, acquired with 64 scans. The experiment in-
cluded the following parameters: mixing time tm Å 200 ms, delays d Å
5.5 ms (Å 1/2JNH), sine-shaped pulsed field gradients of 1 ms duration
with amplitudes Gx Å 10 G/cm and Gz Å 20 G/cm. Selective 907 Gaussian
pulses of 3 ms were used during the WATERGATE scheme (24–27) .
Decoupling during t2 was achieved by a CHIRP-95 sequence (15, 16) with
1 ms CHIRP units of approximately 1.5 kHz amplitude, 15 kHz sweep
width, and an 80-step phase cycle. The contour levels in (c) were lower
by a factor 2 with respect to (a) and (b).
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FIG. 2. Pulse sequence for filtered QUIET-BIRD-NOESY with a bilinear rotation decoupling (BIRD) sequence in the middle of the mixing time
and two half-filters, the latter combined with water suppression. Small ellipses represent selective 907 Gaussian radiofrequency pulses applied to the
water resonance; larger ellipses represent Gx and Gz gradient pulses. The phase cycle is f1 Å x, 0x, x, 0x; f2 Å x, x, 0x, 0x; facq Å x, 0x, 0x, x.
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